Analysis and Design of Low Power Ring Oscillators with Frequency ~10-100 kHz

PRESENTED BY:

PIYUSH KESHRI 3rd year Undergraduate Student Indian Institute Of Technology, Kanpur, India

Acknowledgement

I am extremely thankful to Prof. David Blaauw and Prof. Dennis Sylvester, Electrical Engineering & Computer Science Dept., University Of Michigan for providing me this great opportunity to work in the Lab, Computer Science Dept., under their valuable and generous guidance. I am also highly obliged to Michael Wieckowski, PhD, University of Michigan, under whose mentorship and guidance I have been able to complete the project to this extend. Working under his guidance and support has really helped me to move to next step in the ladder of the field of VLSI.

I would also like to extend the credit of successful completion of the entire Internship project to all the senior graduate students and staff working in the lab, who were always ready to offer help at every step of the project.

> Piyush Keshri 3rd Year, Bachelor of Technology, Electrical Engineering Indian Institute Of Technology, Kanpur

Summer Internship May-July 2008

Certificate

Certified that this project report titled

<u>"Analysis & Design Of Low Power Ring Oscillators with</u> <u>Frequency ~10-100 kHz "</u>

By

Piyush Keshri

is approved by us for submission. Certified further that the report represents the work carried out by the student in Computer Science Dept. Lab under our guidance and support during May – July '2008.

Date:

Prof. David Blaauw

Prof. Dennis Sylvester

<u>Abstract</u>

In the Era of digital World, low power applications are the needs of the market to save the resources. Delay elements (e.g. digital clock) are essential parts of such digital applications. Hence, generation of such low power clocks is a major issue of research.

Precise clock generation independent of supply and temperature sensitivity has been the main objective in various applications such as DC-DC converters. Precise delay can be generated using ring oscillators by using the symmetry of the oscillator ring.

Ring oscillators have been used because of their ease of implementation, wide tuning ranges, operating at low voltages and existing possibility of complete integration in standard CMOS processes. They also occupy smaller chip area.

This project has been aimed at designing a clock with low power, low frequency, and low operating voltage using ring oscillator topology. It aims at determining the best possible configuration for the ring oscillators having the least power consumption and precise delay with lesser sensitivity to the variations in the temperature and supply voltage for frequencies of few kHz. The oscillator configurations have been designed at frequencies of 10 kHz and 100 kHz for an IBM 0.13µm and ST 65nm CMOS processes each.

The design of clock using ring oscillator of a wide range, low sensitivity to the variations of the supply, but mainly low power consumption has been detailed in this work. The various topologies of ring oscillators like simple Vt Inverter Chain, stacked Inverter Chain, Current Starved, High Vt transistors, CMOS Thyristor and CMOS Thyristor with footer have been explored in this project, to determine the sensitivities of each topology w.r.t variations in the temperature and supply. Monte Carlo analysis has been performed to determine the effect of Process Mismatch over the performance of the oscillator. Efforts have been put in to determine an optimum frequency for each topology to minimize the power consumption and maximise the efficiency (determining the 'sweet point').

Problems faced during the project regarding the design and improving performance have been mentioned in the text and few suggestions/solutions/future prospects for the future research have been tried to describe in the project. New ideas for a different kind of topology with lesser power, lesser sensitivity with variations in the environment parameters like temperature & voltage needs to be introduced and some cool ideas has also been tried to implement.

It still remains an open problem to come up with a better circuit with better performance and to determine optimum performance criterion for each topology. The research over such problem still continues and will form the next level for this project.

Table of Contents

	Page No.
Chapter 1	Background of Ring Oscillators & various Topologies 7-8
1.1	Definition7
1.2	Different Topologies of Ring Oscillator
	1.2.1 Minimum Sized SVT (Simple Vt) Inverter Chain
	1.2.2 SVT (Simple Vt) Transistors Inverter Chain
	1.2.3 Double Stacked SVT Inverter Chain
	1.2.4 HVT (High Vt) Transistors Inverter Chain
	1.2.5 Current Starved Inverter Chain
	1.2.6 CMOS Thyristor Inverter Chain
	1.2.7 CMOS Thyristor with Footer Inverter Chain
	<u>IBM 130nm Technology</u>
Chapter 2	Optimum Power Consumption for various Topologies 10-18
	Frequency = 100 kHz
2.1	Optimised Power consumption at 100 kHz frequency10
2.1	2.1.1 At voltage = 1.2 volts
	2.1.2 At voltage = 0.9 volts
	2.1.3 At voltage = 0.6 volts
	2.1.4 At voltage = 0.3 volts
2.2	Monte Carlo Analysis12
	2.2.1 Monte Carlo analysis at 0.6 & 1.2 volts
	2.2.2 Monte Carlo results for different biasing
	Voltages in current Starved
• •	2.2.3 Variation of Standard Deviation w.r.t biasing Voltage
2.3	Supply sensitivity for different Topologies
	2.3.1 Voltage = 1.2 volts
	2.3.2 Voltage = 0.6 volts 2.3.3 Voltage = 0.3 volts
2.4	Biasing voltage sensitivity for Current Starved
2.5	Temperature sensitivity for different Topologies
2.0	2.5.1 Voltage = 1.2 volts
	2.5.2 Voltage = 0.6 volts
	2.5.3 Voltage = 0.3 volts
Chapter 3	Optimum Power Consumption for various Topologies 19-22
	Frequency = 10 kHz
3.1	Optimised Power consumption at 10 kHz frequency19
	3.1.1 At voltage = 1.2 volts
	3.1.2 At voltage = 0.6 volts
	3.1.3 At voltage = 0.3 volts
3.2	Monte Carlo Analysis
	3.2.1 Monte Carlo analysis at 0.6 & 1.2 volts
3.3	Supply sensitivity for different Topologies

Summer Internship May-July 2008

3.3.1	Voltage =	1.2	volts
-------	-----------	-----	-------

- 3.3.2 Voltage = 0.6 volts
- - 3.4.1 Voltage = 1.2 volts
 - 3.4.2 Voltage = 0.6 volts

ST-65nm Technology

Chapter 4Power Consumption Analysis for different Topologies23-25Voltage = 0.6 volts

- 4.5 Temperature sensitivity at 10 kHz & 100 kHz......24

Chapter 5 Determination of "Sweet Point"

26-33

IBM 130 nm Technology

5.1	% Delta f vs. % Delta Vdd Curve at different Vdd26
	5.1.1 Frequency = 10 kHz
	5.1.2 Frequency = 100 kHz
	5.1.3 Frequency = 500 kHz
5.2	Delta f vs. Delta T Curve at different Temperatures27
	5.1.1 Frequency = 10 kHz
	5.1.2 Frequency = 100 kHz
	5.1.3 Frequency = 500 kHz
5.3	Power vs. supply with optimised power consumption28

- 5.3.1 Frequency = 10 kHz
- 5.3.2 Frequency = 100 kHz
- 5.3.3 Frequency = 500 kHz

ST – 65 nm Technology

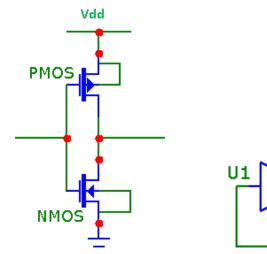
- 5.4 Energy vs. Frequency with minimum sized Topologies......30 (No. of inverters = 601, supply voltage varied)
- 5.5 Energy vs. Frequency with minimum sized Topologies......31 (supply voltage fixed, No. of inverters varied)

Chapter 6 Comparison for the Different Simulation Options in UltraSim 34

Chapter 7 Conclusion

35-37

Chapter 1 Background of Ring Oscillator & its various Configurations


1.1 Definition

The ring oscillators consist of odd number of inverters used as delay cells connected in cascade and in a closed loop, which provide enough gain and phase shift to satisfy the Barkhausen's oscillation criteria.

In these topologies the oscillation frequency is given by:

$$f = \frac{1}{2N\tau_d}$$

Where, N is the number of delay cells in the ring and τ_d is the delay time in the cell.

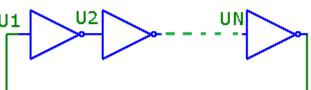


Fig. 1(a) CMOS Inverter

Fig. 1(b) Inverter Chain to form Ring Oscillator

1.3 Different Configurations of Ring Oscillators

- 1.3.2 Minimum Sized SVT (Simple Vt) Transistor Inverter Chain
- 1.3.3 SVT (Simple Vt) Transistors Inverter Chain
- 1.3.4 Double Stacked SVT Inverter Chain
- 1.3.5 HVT (High Vt) Transistors Inverter Chain
- 1.3.6 Current Starved Inverter Chain
- 1.3.7 CMOS Thyristor Inverter Chain
- 1.3.8 CMOS Thyristor with Footer Inverter Chain

1.2.1 Minimum Sized SVT (Simple Vt) Transistor Inverter Chain

Inverters consist of Simple Vt transistors of minimum sized i.e. length and width of transistor is minimum, cascaded in an inverter chain. The number of transistors has been determined by fixing the frequency of oscillations for desired frequency.

1.2.2 SVT (Simple Vt) Transistors Inverter Chain

In this case the inverters consist of simple vt transistors with the length and width of each transistor sized to get the desired frequency with the minimum power consumption. The number of transistors has been determined by minimising the power consumed for a particular frequency with different no. of transistors in the inverter chain.

1.2.3 Double Stacked SVT Inverter Chain

Simple vt transistors are double stacked so that the source and drain terminals of NMOS & PMOS transistors respectively are floating ground and floating Vdd.

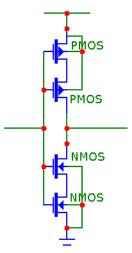


Fig. Circuit Diagram of Double Stacked Inverter

1.2.4 HVT (High Vt) Transistors Inverter Chain

High Vt MOSFETs are used rather than Simple Vt. These high vt transistors have higher Vt values. The circuit design is same as that of SVT inverter chain.

1.2.5 Current Starved Inverter Chain

Starving is done using biasing circuit which the delay of each cell depending upon the extent of starving based on the biasing voltage and the scaling of the MOSFETs. It also improves the efficiency of the system by reducing the power consumption.

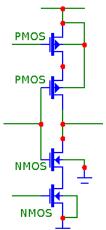


Fig. Inverting Delay cell of Current Starved Oscillator.

1.2.6 CMOS Thyristor Inverter Chain

CMOS Thyristor design has been proposed recently, which is considered to be less sensitive to conditions like voltage as it depends on leakage current and not on voltage of operation.

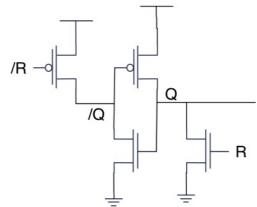


Fig. Circuit Diagram of each Inverting Delay Cell in CMOS Thyristor Design

1.2.7 CMOS Thyristor with Footer

It uses header and footer to provide floating Vdd & ground to the invertering MOSFETs to reduce power consumption further by increasing the delay of the cell.

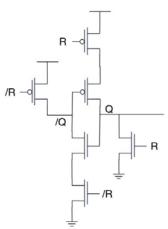


Fig. Circuit Diagram of a Delay Cell in the CMOS Thyristor with Footer design.

Chapter 2 <u>Analysis of various Topologies in IBM 130nm Technology</u>

2.1 Power Consumption for frequency of 100 kHz for various configurations

In this section, optimum value of power consumption for each configuration is determined by scaling the transistors (exception is the minimum sized Inverter Chain) and changing the number of inverters for the fixed frequency of oscillator at 100 kHz.

The Length of the transistors are kept below 50 μ so that fabrication is easier. The width of the transistors is small to reduce the current (by reducing W/L ratio) and thus, increasing the delay of each cell and hence, reducing the overall frequency of oscillation of the ring oscillator.

NOTE: Wmin = 160 nm Lmin = 120 nm Vpp – peak-to-peak voltage of the oscillations

Туре		No. Of Inverters	W		L		Power (nW)	Frequency (kHz)
Min. size Chain	e Inverter							
SVT Inve Chain	erter	7	Wmin	Wmin 46.95u			184.76	100
HVT Inv Chain	rerter	5	Wmin		41.34u		79.6	100
Stack Inv Chain	verter	3	Wmin		41.86u		98.86	100
Current Starved	V _b =0.1v	3	240n	Wmin	220n	13.5u	10.92	V _{pp} (0.15-1.082V)
CMOS T	hyristor	3	Wmin	200n	4.1u	3.3u	23.92	100
CMOS Thyristor Footer		3	180n	400n	4.69u	120n	8.947	100

2.1.1 Supply Voltage, Vdd=1.2Volts

 Table 2.1 Optimised Table for Minimum Power Consumption by diff. Topologies for 100 kHz at 1.2 volts.

2.1.2 <u>Supply Voltage, Vdd =0.9Volts</u>

Туре	No. Of Inverters	W	L	Power (in nW)	Frequency
Min. size Inverter Chain					

Summer Internship May-July 2008

SVT Inverter Chain	5	Wmin	47.34u	68.56	100
HVT Inverter Chain	3	Wmin	41.8u	22.7	100
Stack Inverter Chain	3	Wmin	34.15u	44.22	100

 Table 2.2 Optimised Table for Minimum Power Consumption by diff. Topologies for 100 kHz at 0.9 volts.

2.1.3 <u>Supply Voltage, Vdd =0.6Volts</u>

Туре		No. Of Inverters	W		L		Power (nW)	Frequency
Min. size Chain	e Inverter	18k+1	Wmin		Lmin		1.72×10^3	680
Chuin		27k+1						130.72
SVT Inv Chain	erter	3	Wmin		47u		13.92	100
HVT Inv Chain	rerter	3	265n		17.11u		4.738	100
Stack Inv Chain	verter	3	Wmin		23.86u		13.26	100
Current Starved	V _b =0.1v	3	241n	Wmin	0.69u	0.12u	2.805	V _{pp} (0.20-0.515V)
CMOS T	hyristor	3	Wmin		3u	3.86u	4.364	100
CMOS T Footer	Thyristor	3	246n	200n	0.77u 120n		1.765	100

 Table 2.3 Optimised Table for Minimum Power Consumption by diff. Topologies for 100 kHz at 0.6 volts.

2.1.4 <u>Supply Voltage, Vdd =0.3Volts</u>

Туре		No. Of Inverters	W		L		Power (in nW)	Frequency(kHz)
Min. size Chain	Inverter	935	Wmin		Lmin		20.02	100
SVT Inve Chain	erter	3	Wmin		18.76u		1.13	100
HVT Inv Chain	erter	3	265n		147.5n		37.67 x 10 ⁻³	100
Stack Inverter Chain		3	Wmin		9.35u		1.06	100
Current	V _b =0.1v	3	240n	160n	3.83u	17u	917 x 10 ⁻³	V _{pp}

Starved							(19-186.4mV)
CMOS Thyristor	3	160n		4.09u	3.1u	927.9 x 10 ⁻³	100
CMOS Thyristor Footer	3	280n	160n	316n	120n	409.9 x 10 ⁻³	100

 Table 2.4 Optimised Table for Minimum Power Consumption by diff. Topologies for 100 kHz at 0.3 volts.

2.2 Monte Carlo Results for the configurations

Monte Carlo simulations over the whole project have been performed with, No. of Iterations, # = 1000

At voltages, Vdd = 0.3 volts/ 0.6 volts/ 1.2 volts

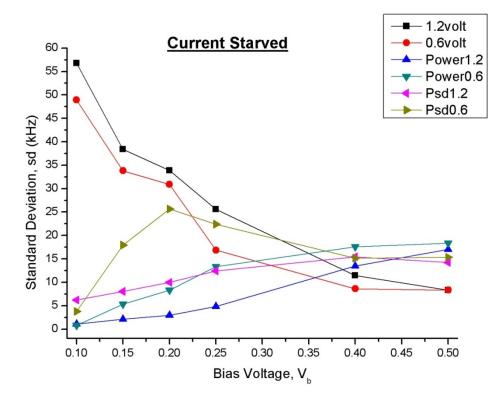
over all the topologies, to determine the effect of "Process & Mismatch" over the performance of the ring oscillator.

Туре		Voltage, V=1.2 volts		Voltage, V	/=0.6 volts	Voltage, V=	Voltage, V=0.3 volts	
		Mean, mu	Standard Deviation, sd (in kHz)	Mean, mu (in kHz)	Standard Deviation, sd (in kHz)	Mean, mu (in kHz)	Standard Deviation, sd (in kHz)	
Minimum Inverter C						97.0716	14.41	
SVT W-L	Optimised	96.4122	4.59516	94.8019	6.82339	94.7357	17.4762	
HVT Inve	rter	98.6651	14.4358	97.3167	23.8747	110.687	92.7469	
Stacked Ir	werter	99.1446	5.23474	92.2865	6.90043	92.3989	17.0309	
Current Starved	V _b =0.1v	121.555	56.7641	107.81	48.9161	91.4288	42.7021	
CMOS Thyristor		106.807	37.6986	115.141	43.1907	107.439	39.5774	
CMOS Thyristor Footer		110.867	57.6057	110.221	68.3668	114.369	77.6809	

2.2.1 Monte Carlo analysis at voltages 0.3 volts, 0.6 volts & 1.2 volts respectively

 Table 2.5
 Table for Monte Carlo Analysis for diff. Topologies at 100 kHz for diff. Vdd.

The Monte Results shows that the Simple Vt (SVT) has the smallest values of σ (sd). Hence, it is least sensitive to the Process mismatch. However, the power consumption is very high hence, unsuitable for low power applications. Since, σ (sd) value for CMOS Thyristor and CMOS Thyristor with Footer is independent for voltage, hence it doesn't depent on the operating voltage for process mismatch. However, the value of σ (sd) needs to be improved using circuit techniques for them.


Biasing voltage, V _b	Voltage, V=1.2 vo	olts	Voltage, V=0.6 volts		
(volts)	Mean, mu (kHz)	Standard Deviation (kHz)	Mean, mu (kHz)	Standard Deviation, sd (kHz)	
0.1	121.555	56.7641	107.81	48.9161	
0.15	100.248	38.3956	81.0032	33.8097	
0.2	103.384	33.9073	102.81	30.8957	
0.25	102.27	25.5958	100.216	16.8544	
0.4	98.9643	11.4477	99.0905	8.62507	
0.5	98.9867	8.35467	99.1785	8.3428	

2.2.2 Monte Carlo Simulations at different Bias Voltages for Current Starved

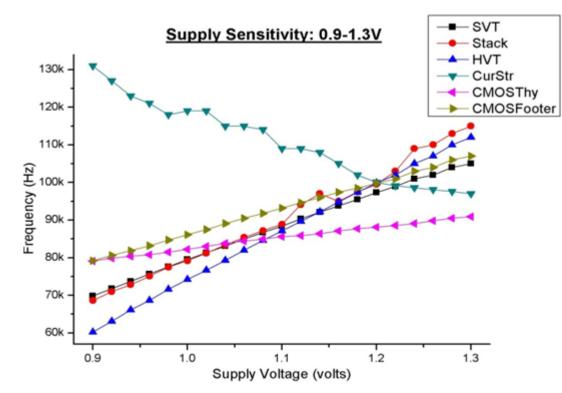
 Table 2.6
 Table for Monte Carlo Analysis for Current starved for diff. Biasing voltages at 100 kHz.

2.2.3 <u>σ (Standard Deviation) vs. Biasing Voltage</u>

The curve for standard deviation vs. Biasing voltage has been plotted to get an idea of how power used can be compensated by reduced value of σ , as power increases with increase in biasing voltage whereas σ decreases and system's performance for process mismatch improves.

Summer Internship May-July 2008

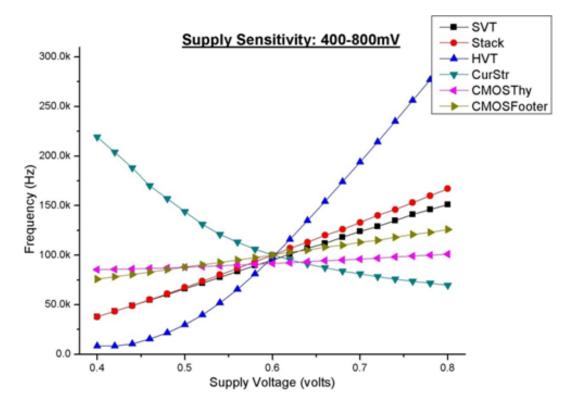
Here, Psd stands for the product of Power and standard deviation (σ).


1.2volt shows the value of σ for different biasing voltage for Vdd = 1.2 volts. 0.6volt shows the value of σ for different biasing voltage for Vdd = 0.6 volts. Power1.2 shows the power consumption at Vdd = 1.2v at diff. biasing voltages.

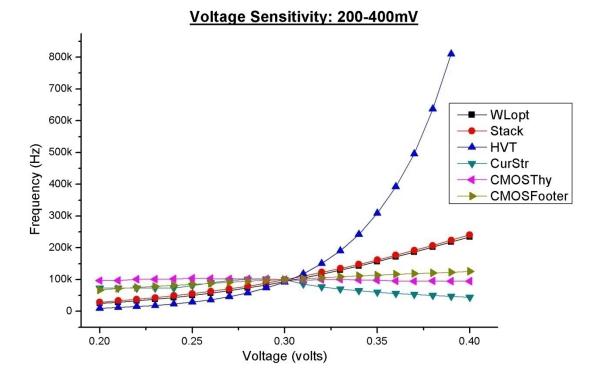
Power0.6 shows the power consumption at Vdd = 0.6v at diff. biasing voltages.

Psd parameter was choosen to determine an optimum point for product of power and σ . However, psd curve turned out to be inconclusive.

2.3 Supply Sensitivity for the various configurations at different Vdd


Supply sensitivity for various configurations at different Vdd (0.3 volts/ 0.6 volts/ 1.2 volts) have been determined to study the effect of voltage variations over the oscillator. It clearly shows that CMOS Thyristor & Thyristor with Footer are least sensitive to the variations in the voltage.

2.3.1 <u>Supply Voltage, Vdd = 1.2 volts</u>


Fig. Supply Sensitivity around Vdd = 1.2 volts

2.3.2 <u>Supply voltage, Vdd = 0.6 volts</u>

Fig. Supply Sensitivity around Vdd = 0.6 volts

2.3.3 <u>Supply voltage, Vdd = 0.3 volts</u>

Fig. Supply Sensitivity around Vdd = 0.3 volts

These curves of voltage sensitivity of different configurations clearly shows that CMOS thyristor and Thyristor with Footer can be used over applications where battery life decays like DC-DC converter as they are stable over a large supply voltage range.

2.4 Biasing Voltage Sensitivity for Current Starved Configuration for various Vdd

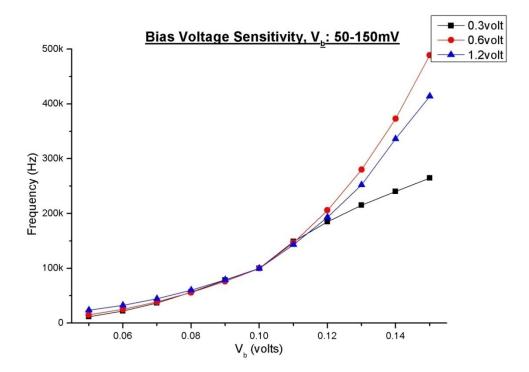


Fig. Biasing Voltage Sensitivity for Current starved

2.5 Temperature Sensitivity

Temperature sensitivity has been determined to know the effect of variations of temperature over the frequency of oscillator. It can be derived from the graphs that the Thyristor and thyristor with footer are highly sensitive to the temperature and comparable to current starved in terms of sensitivity.

Temperature sensitivity of HVt and SVt inver chains is good as compared to thyristor configurations and hence, is highly stable over large temperature range.

Temperature variations have been taken over the range of 0° C - 100° C for the analysis in the whole project.

2.5.1 <u>Voltage, Vdd = 1.2 volts</u>

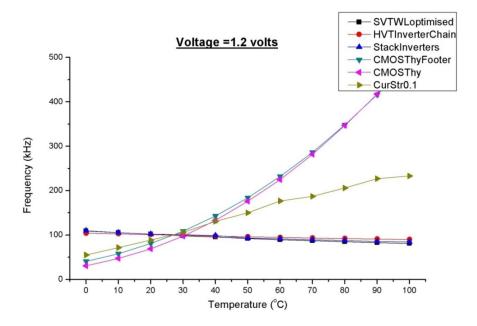


Fig. Temperature Sensitivity for various configs. At Vdd = 1.2 volts

$2.5.2 \quad \underline{\text{Voltage, Vdd}} = 0.6 \text{ volts}$

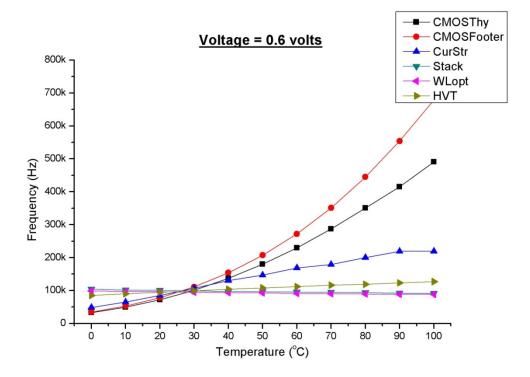
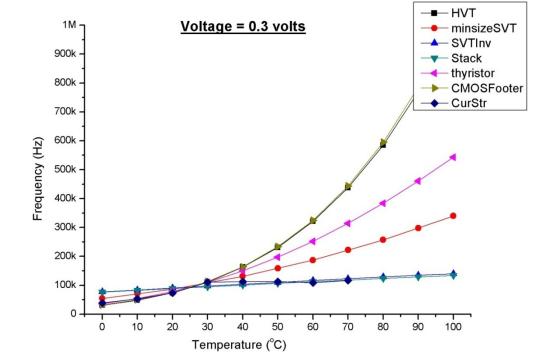



Fig. Temperature Sensitivity for various configs. At Vdd = 0.6 volts

2.5.3 <u>Voltage, Vdd = 0.3 volts</u>

Fig. Temperature Sensitivity for various configs. At Vdd = 0.6 volts.

Chapter 3 <u>Power Consumption and Analysis of variations at frequency =</u> <u>10 kHz in IBM 130nm technology</u>

3.1 Power Consumption for frequency of 10 kHz for various configurations

3.1.1 Voltage, Vdd=1.2Volts

Туре	No. Of Inverters	W		L		Power (in nW)	Frequency (kHz)
SVT Inverter Chain	63	Wmin		48.75u		178.1	10
HVT Inverter Chain	37	Wmin		48.5u		71.77	10
Stack Inverter Chain	17	Wmin		47.6u		90.04	10
Current V _b =0.1v Starved	3	230n	Wmin	2.31u	48u	2.851	V _{pp} (0.42-1.123V)
CMOS Thyristor	3	160n	190n	14.9u	13.88u	7.867	10
CMOS Thyristor Footer	3	200n	220n	31.75u	120n	4.933	10

Table 3.1Optimum Table for Minimum Power Consumption for diff. Topologies at 10 kHz at
Vdd=1.2volts.

3.1.2 Voltage, Vdd = 0.6 volts

Туре		No. Of Inverters	W		L		Power (nW)	Frequency
SVT Inv Chain	erter	25	Wmin		48.25u		14.054	10
HVT Inv Chain	rerter	7	Wmin		48.89u		2.088	10
Stack Inv Chain	verter	7	Wmin		45.12u		7.327	10
Current Starved	V _b =0.1v	3	200n	Wmin	5.7u	47.1u	1.036	V _{pp} (0.17- 0.49V)
CMOS Thyristor		3	Wmin		13.32u	13.32u	1.597	10
CMOS Thyristor Footer		3	230n	200n	18.45u	120n	0.936	10

Table 3.2 Optimum Table for Minimum Power Consumption for diff. Topologies at 10 kHz atVdd=0.6volts.

Туре		Voltage, V=1.	2 volts	Voltage, V=0.6 volts		
		Mean, mu	Standard Deviation, sd (in kHz)	Mean, mu (in kHz)	Standard Deviation, sd (in kHz)	
SVT W-L	Optimised	9.93164k	0.479221k	9.97186k	0.699939k	
HVT Inverter		9.94542k	1.43k	10.045k	2.27168k	
Stacked Inverter		9.90516k	0.488524k	9.935k	0.705135k	
Current Starved	V _b =0.1v	10.9907k	4.82361k	10.3761k	5.00513k	
CMOS Thyristor		107364k	3.5312k	10.7015k	3.73415k	
CMOS Thyristor Footer		10.9253k	4.64089k	10.8267k	4.94253k	

3.2 Monte Carlo Analysis for various configuration	3.2	Monte Carlo	Analysis for	various o	configuration
--	-----	--------------------	--------------	-----------	---------------

Table 3.1 Table for Monte Carlo Analysis for diff. Topologies at 10 kHz.

3.3 Sensitivity to the supply variations

3.3.1 Voltage sensitivity at 1.2 volts

Fig. Supply sensitivity at 1.2 volts

3.3.2 Voltage sensitivity at 0.6 volts

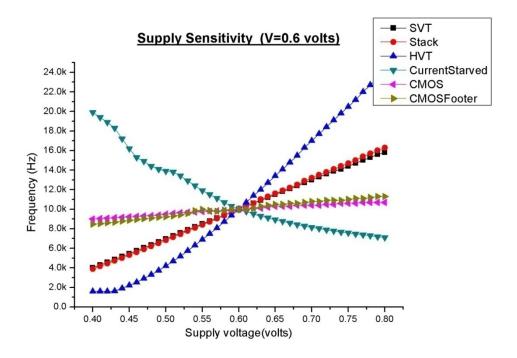


Fig. Supply sensitivity at 0.6 volts

3.4 Temperature sensitivity for variations in temperature

3.4.1 <u>Temperature sensitivity at Vdd = 1.2 volts</u>

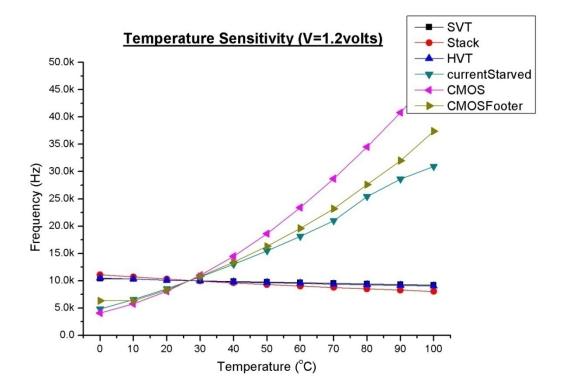
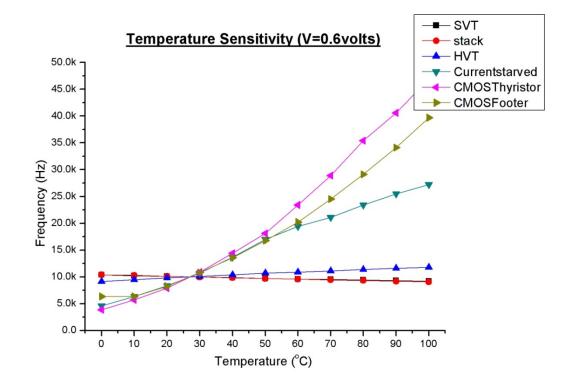



Fig. Temperature Sensitivity at 1.2 volts

3.4.2 <u>Temperature Sensitivity at Vdd = 0.6 volts</u>

Fig. Temperature Sensitivity at 0.6 volts

Chapter 4 Analysis of various Topologies in ST-65nm Technology

Since, the SVt and Stacked ring oscillator s have very high power consumption and hence, cannot be used for low power applications. In ST 65nm technology these topologies have not been explored rather, the discussion has been continued over HVt, Current Starved, CMOS Thyristor and CMOS Thyristor with Footer.

In ST 65nm Technology the $\underline{Vdd} = 0.6$ volts and the whole project in ST 65nm is based on this Vdd.

Туре	No. Of Inverter	W		L		Power (nW)	Power(nW) (IBM130)		
HVt (gp)	3	120 nm		25.71 um		12.2	4.738		
HVt (lp)	3	120 nm		14.69 um		3.159			
Current	3	120nm	280nm	4.05um		130	nm	3.373	3.957
Starved									
CMOS	3	120nm	120nm	60nm		60n	m	382.2 x 10 ⁻³	4.364
Thyristor									
CMOS	3	120nm	120nm	60nm	60)nm	60nm	347.8 x 10 ⁻³	1.765
Thyristor									
Footer									

4.1 Power Consumption for frequency of 100 kHz for various configurations

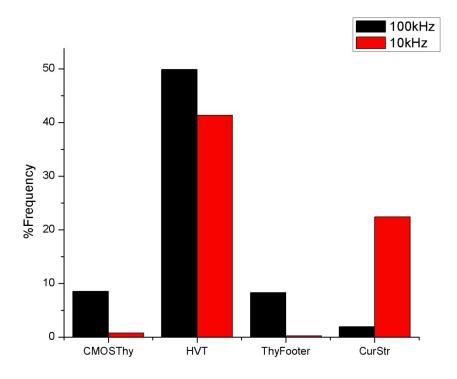
 Table 4.1 Optimum Table for Minimum Power Consumption for diff. Topologies at 100 kHz.

4.2 Power Consumption for frequency of 10 kHz for various configurations

Туре	No. Of	W		L				Power (nW)	Power(nW
	Inverter)
									(IBM130)
HVt (gp)	5	140nm		47.96	um			4.63	2.088
HVt (lp)	3	120nm		47um	l			997.8 x 10 ⁻³	
Current	3	120nm	120nm	26um	l	70)0nm	3.388	1.036
Starved									
CMOS	3	160nm	170nm	0.6un	n	1u	m	144.6 x 10 ⁻³	1.597
Thyristor									
CMOS	3	155nm	120nm	1um	120n	m	150nm	93.37 x 10 ⁻³	936 x 10 ⁻³
Thyristor									
Footer									

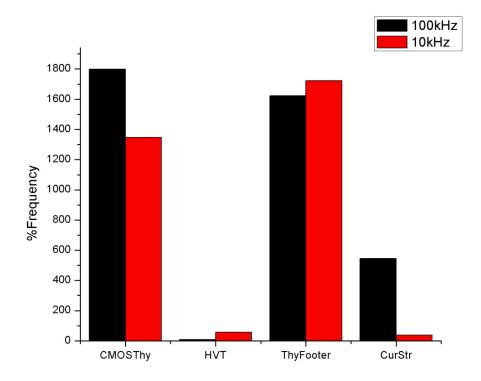
 Table 4.2 Optimum Table for Minimum Power Consumption for diff. Topologies at 10 kHz.

4.3 Comparison of Monte Carlo Results for various Topologies in IBM 130nm and ST 65nm Technology


Туре	Free	quency = 100 k	кНz	Frequency = 10 kHz			
	Mean, mu	Standard Deviation, sd	Sd (IBM130)	Mean, mu	Sd	Sd (IBM130)	

HVt (gp)	99.9632k	0.39958k	23.8747k	10.0048k	0.03660928	2.27168k
HVt (lp)	100.074k	1.00861k		10.0633k	56.6214	
Current	96.4823k	42.617k	48.9161k	20.8183k	4.3343k	5.00513k
Starved						
CMOS	98.9233k	42.686k	43.1907k	9.71423k	1.03919k	3.733415k
Thyristor						
CMOS	98.5847k	42.0892k	68.3668k	9.7212k	2.60528k	4.94253k
Thyristor						
Footer						

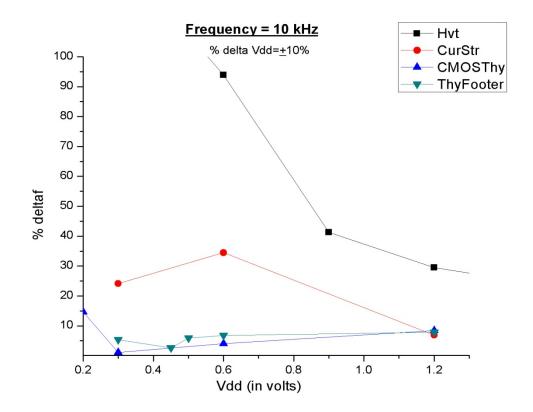
 Table 4.3 Optimum Table for Minimum Power Consumption for diff. Topologies at 10 kHz.


4.4 Comparison among the Sensitivity of various Topologies for Voltage variations

It shows the comparison between the voltage sensitivity (10% of Vdd i.e. 0.54volts-0.66 volts) of the 4 topologies at 100 kHz and 10 kHz. This indicates that the voltage sensitivity of Thyristor and Thyristor with Footer is almost nil and suit s well where, voltage variations occur.

4.5 Comparison among the Sensitivity of various Topologies for Temperature variations

It shows the comparison between the temperature sensitivity $(0^{\circ}C-100^{\circ}C)$ of the 4 topologies at 100 kHz and 10 kHz. The same trend as IBM 130 follows here, as CMOS Thyristor & Thyristor with Footer are highly sensitive to the temperature, since both depend on the leakage current which is highly temperature dependent.

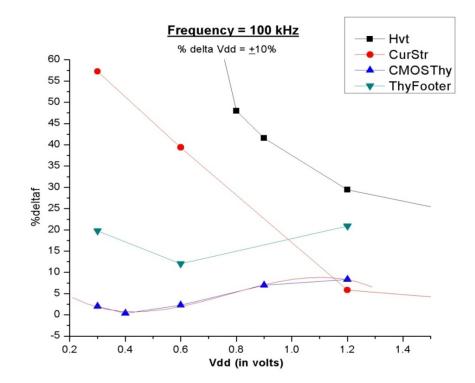

Chapter 5 <u>A f variations w.r.t AVdd and AT for 10 & 100 kHz oscillators</u>

5.1 %Delta f vs. %Delta Vdd

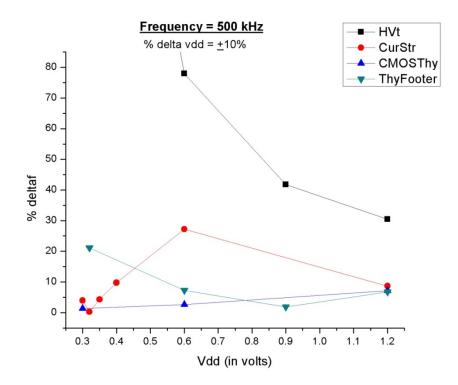
 $\%\Delta f$ vs. %Vdd has been obtained to determine the optimum Vdd at which frequency variation w.r.t variations in Vdd is minimum. The each coordinate in the curve represents the point corresponding to an optimum value of power consumption at particular vdd.

 $\%\Delta V dd = \pm 10\%$

5.1.1 $\frac{\%\Delta f \text{ vs. }\%\Delta V \text{ dd at frequency} = 10 \text{ kHz}}{10 \text{ kHz}}$

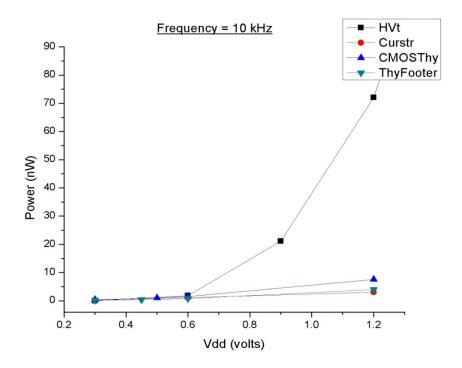


For CMOS Thyristor, Vdd ~ 0.3volts is an optimum voltage as $\%\Delta f \sim 0\%$. For CMOS Thyristor with Footer, Vdd ~ 0.45 is an optimum voltage. However, optimum value for HVt & Current Starved couldn't be derived. The problem in determining the optimum point is that, since there are many parameters to be optimised to minimize the power, the points do not follow a particular trend.

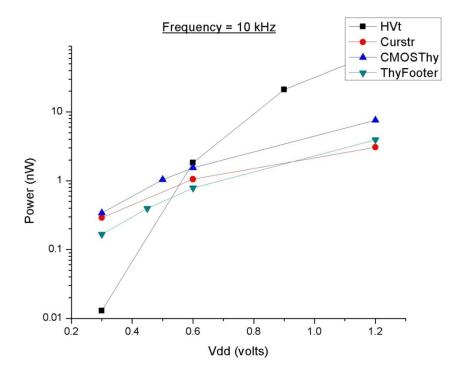

5.1.2 <u>% Δ f vs. % Δ Vdd at frequency = 100 kHz</u>

The same trend follows for 100 kHz as well.

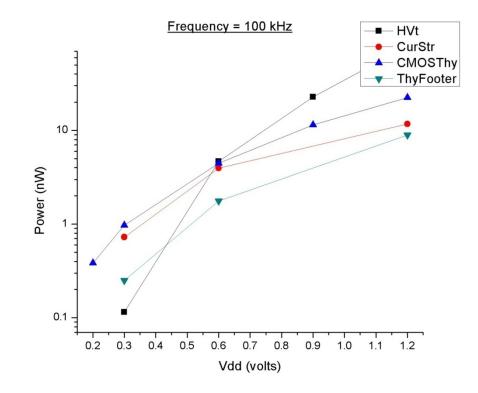
The optimum Vdd for CMOS Thyristor ~0.3 volts and the optimum supply voltage for CMOS Thyristor with Footer, Vdd ~ 0.5 volts.


5.1.3 <u>% Δ f vs. % Δ Vdd at frequency = 500 kHz</u>

5.2 Power vs. Supply Voltage

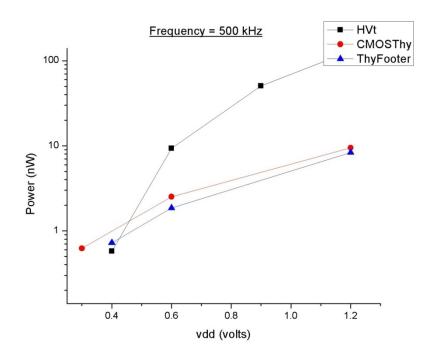

Power vs. Vdd has been determined to get an idea of how the power consumption pattern changes as the Vdd is decreased. The curve has been drawn for frequencies = 10 kHz/100 kHz.

5.2.1 <u>Power vs. Vdd for Frequency = 10 kHz</u>

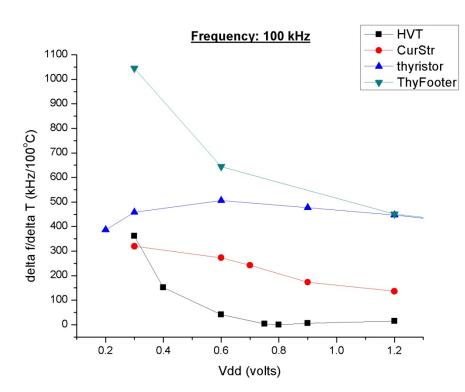

The power decreases as Vdd reduces. However, the curve is not clear at smaller vdd \sim 0.3 volts. Hence, Curve in Log scale has been drawn .

In Log Scale

In the graph, power consumption of HVt decreases drastically beyond 0.6 volts in comparison to the other three configurations. It gives an idea of using HVt at very low

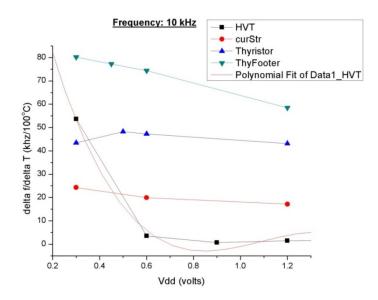

voltages ~ 0.3 volts to improve power further. This gives an idea of using High Vt transistors in the CMOS Thyristor topology to improve power further.

5.2.2 <u>Power vs. Supply voltage, at Frequency = 100 kHz</u>


The curve has been drawn in log scale to get more detailed information. The trend for the Power vs. Vdd has been the similar for Frequency = 100 kHz as for Frequency = 10 kHz.Power used by HVt at low voltages reduces sharply.

5.2.3 <u>Power vs. Supply Voltage at Frequency = 500 kHz</u>

5.3 Delta f vs. Delta T

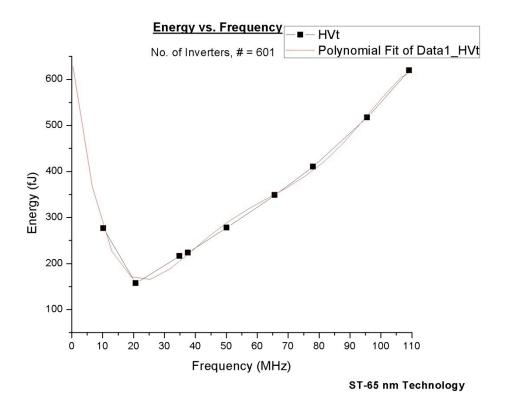

Delta f vs. Delta T curve has been determined to determine an optimum Vdd at which the change in frequency w.r.t the variations in the Temperature is minimized. The Temperature range has been taken from $0^{\circ}C - 100^{\circ}C$.

5.3.1 <u>Delta f vs. Delta T at frequency = 100 kHz</u>

The curve clearly indicates that the HVT has the minimum Temperature sensitivity. However, for CMOS Thyristor Temperature sensitivity is almost constant over the Vdd range (0.3v - 1.2v), which needs to be improved with better circuit design. For, current Starved the sensitivity to the variations in Temperature decreases with the increase in supply voltage.

5.3.2 Delta f vs. Delta T at frequency = 10 kHz

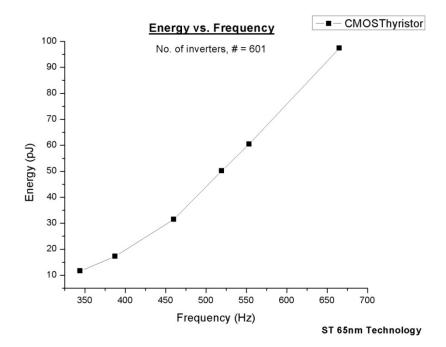
At 10 kHz, the HVt curve shows a pattern which indicates the change in frequency with the variations in Temperature would be minimum ($\sim 0 \text{ kHz}/100^{\circ}\text{C}$) at $\sim 0.75-0.8$ volts. However, for the other three configurations it can not be concluded directly.


5.4 Energy vs. Frequency for minimum sized Topologies at ST-65nm Technology

Motivation: Energy vs. Frequency curve for definite number of Inverters with minimum sized is drawn to determine the frequency beyond which the power loss due to leakage becomes dominant. This helps in determining the optimum frequency of operation for a particular topology so that the energy consumed can be minimised.

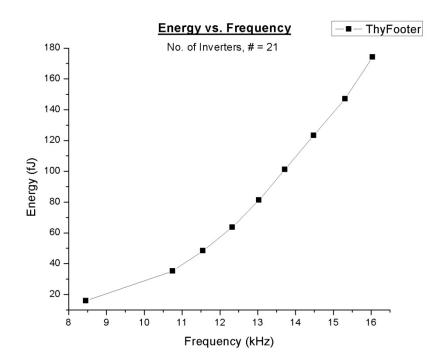
The large number of inverters (e.g. # = 601) is taken with minimum sized inverters so that power consumption due to leakage becomes dominant. Otherwise, the power loss due to leakage do not becomes dominant in lesser number of inverters like 3-5.

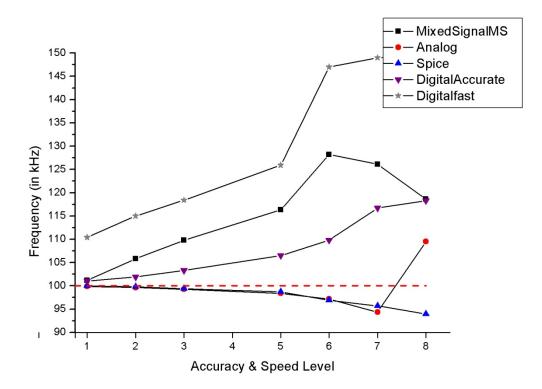
5.4.1 HVt Inverter Chain


Length = Lmin = 60 nm Width = Wmin = 120 nm

This curve clearly indicates that the optimum operating frequency for High Vt transistors (HVT) Inverter Chain is ~ 20 MHz as energy consumption is minimum. Beyond 20MHz leakage power becomes dominant.

5.4.2 CMOS Thyristor Inverter Chain


Length = Lmin = 60 nm Width = Wmin = 120 nm


The curve shows, that either the optimum frequency of operation for the CMOS Thyristor Topology exist beyond 300Hz or it is difficult to be determined.

5.4.3 CMOS Thyristor with Footer

Length = Lmin = 60 nm Width = Wmin = 120 nm

Motivation: For a particular simulation using UltraSim the result I obtained was 100 kHz and when I simulated the same circuit on Spectre, the result obtained was 82 kHz. This led to the inspection of the different options available in the UltraSim and it clearly revealed that the accuracy of UltraSim depends on the options selected.

The default settings for UltaSim are: Mixed Signal MS (Speed & Accuracy Level = 5)

In the graph, Red Doted line shows the simulation result obtained from the Spectre simulations. The accuracy & speed level for all the 5 options in UltraSim has been varied. The graph clearly shows that:

- Digital Accurate shows better results than the default settings (Mixed Signal).
- Ana log option shows the best results with least error from the Spectre simulations.
- Aggressive (speed & accuracy level = 8) shows better results than Aggressive (speed & accuracy level = 6 and 7) for Mixed Signal.

Chapter 7 Conclusion

- The Power consumption in the CMOS Thyristor with Footer topology is the least.
- CMOS Thyristor and CMOS Thyristor with Footer are insensitive to the variations in the supply and can be used as an ideal configuration for DC-DC converters etc., where voltage supply from battery reduces with the time.
- However, both the configurations have a very poor Temperature sensitivity and are highly vulnerable to the variations in the temperature and hence, cannot be used temperature specific applications.
- As the Technology scales down from IBM 130nm to ST 65 nm Technology the power consumption for CMOS Thyristor & CMOS Thyristor with Footer reduces by ~ 90 %.
- While scaling down the technology from IBM130nm to ST 65mn the power consumption for HVt inverter chain topology has reduced by \sim 50% 60%. Moreover, the value of sigma (standard Deviation) has decreased by \sim 25x 40X.

7.1 **Possible Solutions for Current Problems**

7.1.1 <u>To Reduce Power Further</u>

To reduce power high vt transistors can be used with CMOS Thyristor and CMOS thyristor with Footer topology to reduce power further.

7.1.2 <u>To Reduce Sensitivity to the variations in Temperature & Voltage</u>

CMOS thyristor and CMOS Thyristor with Footer configurations are leakage dependent and hence, do not depend on the operating voltage. As a result, their voltage sensitivity is too good. However, their temperature sensitivity is highly temperature dependent, since leakage current in the MOSFETs exponentially depend on the Temperature.

HVT MOSFETs are lesser temperature sensitive as compared to simple Vt (low Vt) MOSFETs.

- High Vt MOSFETs can be used in the design of CMOS Thyristor and Thyristor with Footer to make them lesser temperature sensitive. However, it reduces the performance of the system (speed), hence, HVt can be used at leakage dependent MOSFETs and Simple Vt can be used at other locations of the design to improve the performance of the system.
- Newer biasing design has to be developed for the CMOS Thyristor so that the leakage current flowing in the system is a controlled (regulated) current and as a result, the system becomes insensitive to the temperature variations.

7.1.3 <u>To improve overall performance of the Topology</u>

To improve the overall performance of the topology, the topology should be operated around its "sweet point" (its "optimum point") where the system has the best performance. This will improve the efficiency of the system.

- Since, the power consumption by HVt Inverter Chain reduces drastically when it is being operated in sub-threshold region, hence its better to operate it below 0.4 volts.
- This property can be used in even in CMOS Thyristor Design as well as CMOS Thyristor with Footer Design, by using High Vt transistors in place of Simple Vt (SVT) transistors and reduce, the power consumption further.

7.2 New Designs Proposed

Some of the modified designs have been proposed by the research group to improve the performance of the ring oscillator.

7.2.1 Using HVt transistors in CMOS Thyristor

Since, the power consumption in case of high Vt transistors at voltage below 0.5 volts (sub threshold region) is too low in comparison to the CMOS Thyristor and Thyristor with footer designs, HVt transistors can be used in place of simple Vt transistors in CMOS Thyristor design.

Hence, four cases has been explored in terms of their sensitivities and effect of Process Mismatch over their performance through Monte Carlo Analysis.

Case 1: SVT + SVT transistors in CMOS Thyristor design. (Original Design)

Case 2: HVT + HVT transistors in CMOS Thyristor design.

Case 3: SVT + HVT transistors in CMOS Thyristor design.

Case 4: HVT + SVT transistors in CMOS Thyristor design.

Type(CMOS Thyristor)	No. Of Inverters	W		L		Power (W)	Frequency (kHz)
SVT + SVT (original Design)	3	160nm	170nm	0.6um	lum	144.6p	10k
HVT + HVT	3	120nm	120nm	138nm	60nm	33.34p	10k
SVT + HVT	3	120nm	560nm	60nm	115nm	70.81p	10k
HVT + SVT	3	120nm	120nm	245nm	60nm	201.7p	10k

Optimum Power consumption by 4 cases

<u>Comparison of Monte Carlo Results and %\(\Delta f w.r.t variations in Temperature & voltage</u>

The whole analysis has been been done using, Vdd = 0.6 volts and frequency = 10 kHz. $\Delta T = 0^{\circ}C - 100^{\circ}C$ $\%\Delta Vdd = \pm 10\%$

Туре	Monte Carlo Results		Δf w.r.t ΔV dd	$\Delta f w.r.t \% \Delta T$
	Mean	Standard		
		Deviation,		
		σ		
SVT + SVT	9.71423k	1.03919k	0.78%	134.806k
(original Design)				
HVT + HVT	10.5058k	2.58705k	4.15%	183.09k
SVT + HVT	10.4346k	2.42534k	5.41%	222.441k
HVT + SVT	9.86447k	3.80032k	15.37%	180.973k

Inference

The power has been reduced by $\sim 80\%$ by using HVT transistors in place of simple Vt transistors in CMOS Thyristor design at 0.6 volts. Which can be further be improved by using smaller values of Vdd. However, there has not been any improvement in terms of sensitivity for the variations in voltage and temperature. This indicates that to improve the performance of the system in terms of process and environment variations we have to look for some other better circuit design.

7.2.2 Adding another transistor in CMOS Thyristor Design

Adding another transistor in CMOS Thyristor design has been proposed to compensate for mismatch between the inverting transistors and hence, to improve the performance of the Oscillator.

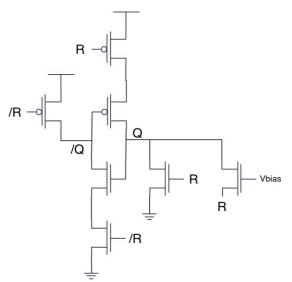


Fig. New Modified Design to improve the process Mismatch problem

Here, the biasing voltage can be controlled externally which controls the voltage at Q and hence, voltage level at q is not floating during the floating stage of the delay cell.

Such new designs have to be explored in future to improve the performance of the ring oscillators or clocks. Exploring such designs will form the next level to this project and will form the basis for the future research.